If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9(7+4x^2)+16x^2=323
We move all terms to the left:
9(7+4x^2)+16x^2-(323)=0
We add all the numbers together, and all the variables
16x^2+9(7+4x^2)-323=0
We multiply parentheses
16x^2+36x^2+63-323=0
We add all the numbers together, and all the variables
52x^2-260=0
a = 52; b = 0; c = -260;
Δ = b2-4ac
Δ = 02-4·52·(-260)
Δ = 54080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54080}=\sqrt{10816*5}=\sqrt{10816}*\sqrt{5}=104\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-104\sqrt{5}}{2*52}=\frac{0-104\sqrt{5}}{104} =-\frac{104\sqrt{5}}{104} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+104\sqrt{5}}{2*52}=\frac{0+104\sqrt{5}}{104} =\frac{104\sqrt{5}}{104} =\sqrt{5} $
| 42=4j+6 | | 4-4/5x=0 | | 0.2x+3.75=5 | | 6(x=2)=-42 | | 3=12-f | | 5t+4/2=7 | | 2(x-6)-6=20x-90 | | 6(x)=4x+5 | | 5r–4=r+15 | | 17/2+3x=1/4 | | 2(x-6)-6=20x-9 | | 4/x+6=x+3 | | j2=√144 | | 1÷3×3x×1÷3×-6=2x | | 2/4y-5=3 | | 2(x+6)-6=20x-90 | | 32n=10n-18 | | 40=14j=2(-4j-13) | | 2m+5(m-2=11 | | 15+13=-4(4x-7) | | 3j-2j=1 | | 5n+n=3n | | 59+(x+10)=360 | | 24=6h-18 | | 9=9p-9 | | 4x/7=11/7 | | 1÷2(x-4)=4x | | x(6x+23)=4 | | 2(12+k)=40 | | 8^(x+2)=32 | | 5|7-4m|-2=23 | | 44=3t+11 |